TECHNICAL MANUAL FOR THE
“REINHERIT A MUSEUM”
AUGMENTED REALITY MOBILE
APPLICATION

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

1 Summary

This document presents a short description for the setting up and usage of the source code developed to
support the immersive performance for the RelnHerit project that took place at the Bank of Cyprus
Cultural Foundation on the 19th of May 2023. The purpose of the document is to facilitate users who wish
to recreate a similar experience to their own premises. The code for the application can be accessed from
the following GitHub repository link: https://github.com/CYENS/RelnHeritArApp.

2 Contents

B U 210 0 I= 1 PP PP PP PP PP PPP PP PPPPPP ii
P o 4 (=T o | 3PP OPPROPRRTOR: ii
3 N 1Y oo (¥ ot oY o RO POV PR VPR PPPRTOPRTOPR 1
2 GUIEINES fOF FRUSE. ... ueeeieieete ettt et b e st st st e st s e bt bt e e b e saeesaeesanenneesnne 1
3 TeChniCal GUIAEIINES.oiciieieeie ettt bbb b sbe e e e 2
3.1 (7o o1 R o1 o I Yo [13RS 2
3.2 (o T Yo [T g Y=Y ol 1= o PR ST 4
3.3 Ul and Navigating through the Application.........ocuiiiiiiiiiiiie e 5
3 B €1 TSP PT PRSPPI 8
3.5 (ST oYk n foT g W WoTor=YuToT g K1Y/ F= T o F= - Y U SR 10
3.5.1 (@ TULd [T TN @ AVl o 1YL PSRRI 11

3.6 EXNIDIt MOAEIS IMAN@EET ..ccueviieieiiie ettt e e ettt e s et e e e sasraeesssteeesasseaeesnnaeesns 12
3.7 Prefabs and EXhibit MOAEIS.......ccuiiiiiiie et e 13
3.8 ViIieWs and INTEraCtioNSccveiiiiiiiie ettt st sbe e st s e e 13
3.9 Firebase and Data HandliNgcccueeieiiiiii ittt tte e e e bae e e e erbae e s e saeaeeeeaes 14

3.10

LT T I) = 1 (o o 16

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

1 Introduction

“RelnHerit a Musuem” was a performance that took place on May 19" 2023, at the Bank of Cyprus Cultural
Foundation in Nicosia, Cyprus. The performance included live instrumental musician, projection mapping
with generative visuals, and an Augmented Reality application that visitors used to view a virtual
exhibitions with artefacts that are not in the permanent public exhibition of the Foundation.

The Augmented Reality application was developed using the Unity Game Engine and the Lightship
Augmented Reality Developer Kit (ARDK) and deployed to the Google Play store and Apple App store
through which visitors could download it. The application provided information for 12 artefacts from the
private collection of the Foundation, which were also 3D-scanned and presented as interactable 3D virtual
models. Before the performance, and within the exhibition areas another 12 phones each associated with
one of the artefacts were placed at certain locations along with a paired Bluetooth speaker. When visitors
viewed and interacted with the virtual artefacts, these interactions were tracked and stored at a cloud-
based database. The additional phones that were placed within exhibition space, run an application (base
station) which listened to the events on the database, and whenever a new interaction was observed, it
triggered an event which played music specifically composed for the event. Each of the base stations
included six music tracks, that each started playing in order after an interaction was triggered. The tracks
did not play in a loop.

2 Guidelines for reuse

These are the proposed steps to be followed when setting up a system for such a performance:

e The mobile phones that contain the Base Station application should be hidden so that no one can
interfere with them. Also, visitors should not be able to reach them or see them so that the immersion
of the project is not broken. Also, if it is possible, the devices should include locking mechanisms to
avoid theft.

e The Bluetooth speakers should also be hidden from the eyes of the visitors and placed near points of
interest. This will make the exhibition more interactive and engaging.

e When every mobile phone and Bluetooth speaker is set up, the Base Station application should be set
up. First, the mobile phone must be connected to the internet in order to be able to connect to the
project’s database and receive or send data to it. Then, inside the application, the number of the
exhibit must be configured. Once this is done, the application will receive updates once certain events
occur during the performance.

e [f a userviews or interacts with an exhibit, the project’s database records the data for further analysis.
The interaction event for each exhibit is also sent to the corresponding Base Station application. When
this happens and for every interaction, a specific sound starts playing that is previously loaded in the
application.

It is important to mention that data collected during the event do not contain any sensitive private
information about the visitors or the performers. The application tracks the following data:

1. Interactions. When the user interacts with an exhibit, the action is recorded along with the time
it happened.

2. Views. When a user starts or stops viewing an exhibit the application records both events and
creates two timestamps. This is to determine the duration that the user was viewing each exhibit.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

More details regarding the specific app will be provided in dedicated sections of the RelnHerit digital hub
with manuals, instructions, guidelines and links to the source code for the recreation of the experience, in
a more “personalized” context for other potential cultural heritage sites across Europe.

3 Technical Guidelines
“RelnHerit a Museum” is a location-based augmented reality application for mobile devices (Android and

i0S) that assists with the promotion of cultural heritage sites, by offering an interactive experience to
guests.

3.1 Lightship Scans
The application uses the Lightship SDK for Unity in order to recognize specific areas and project the
artefacts. The areas used to create the AR experience must be scanned first.

To scan those areas, we need to use the Wayfarer application which is currently available only on Android
mobile phones (https://wayfarer.nianticlabs.com/). Through it, the user can use the mobile phone’s
camera and record videos of the area that is going to be used in the AR experience. Then the video is

uploaded on the Niantic servers and processed to create a mesh that will later be used to place the AR
objects in the scene. Depending on the traffic on the servers, this process can last from 1 to 5 days. Once
the mesh is created, it can be downloaded and imported to Unity. Afterwards anchors can be placed
around this mesh which represents the AR object that will appear on the application. Lastly, all the anchors
along with their location data and the AR object are stored in a Manifest file that Lightship SDK is using.
Each area that is going to be used corresponds to one Manifest file. All these files are then loaded into the
Location Manifest Manager. By calling the LoadWayspotAnchors function, the application can load all the
AR objects for that specific area and are able to be viewed through the mobile phone’s camera.

A Unaligned

1+ @
el

&

©
N

EBIY Wayspot Anchors & Download Mesh

Name Position Lat/Lng Blob

36FBA2DBBF5841F7939BB4ABO3FDIEOB (0.00, 0.00, 0.00) 35172924 / 33.362137 ChQIn7nVx9+e1aNTEL7R6POWItXURRjmoKmA... (@

Figure 1. Wayfarer application.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

Figure 2. Mesh inside Unity.

Figure 3. The anchor is placed manually around the mesh.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

Location Manifest Manager (Script)

p 1: Drag Manifests into manifest list below

Manifests

Anchored Content

Authored Anchor (Default) Aesl JBALAE

Anct

Ancho

r adding in Mani ate Anchors in build:
ted Prefabs

Populate Anchors

Clear Manifests and Anchor Content

Figure 4. The Location Manifest Manager holds the Manifests and their corresponding anchors.

in filter

3], prefab, an Content.ContentScale);

Figure 5. LoadWayspotAnchors function.

3.2 Loading Screen
The application's loading screen can be used to customize the application's appearance and helps initialize
it. This screen contains two sections, the logo area and the partners area. There are two images which can
be changed according to each event.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

.

Y|
o
¢ Hal

RelnHerit

|
& :
x';,, FCTN
I -
BOYENS w) WARCADA ﬁ{ﬁ-ﬁ

Figure 6. Loading Screen with the RelnHerit logo.

roLI NG

Figure 7. The logo and the partners images can be switched in Unity.

3.3 Ul and Navigating through the Application
In this section we go through the screens that appear when the user starts the application. The first screen
is an introduction to the event/exhibition. It contains a simple text with scrollbar. Throughout the
application, every text is handled by the Localization package from Unity which is used to configure
localization settings and adds support for multiple languages (for this event English and Greek). Each text
that needs to appear in several languages needs to have the “Localize String Event” component. At the
top of the screen there is also a small discreet button that switches between English and Greek. Lastly,
when the user presses the circular pink button at the bottom of the screen, the main application menu

loads.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

english

KAnpovopnaote §ava to
Mouceio

EuBuBiotikrn napdotaocn oto
MoAttotiko

KaAwooploate! Méoa amd Tnv
epapuoyn emavinuévng
TPAYUATIKOTNTAG TIOU £XETE 0T
xépla gag, mapouvatalovral
TIAPAAANAQ LE TNV QpXUALOAOYLKN
TuAhoyn Tewpylou kat NepEAng
Tlanpa Miepidn kat TIg
npoowplveég ekbéoelg Tou
MoAlTioTikoU 18pluatog TNng
Tpanelag Komtpou, delypata and
TnvTtAolaola eBvoypadikn cuAoyn
tou I18platog, n omoia Sev eival

PSE . 15— NP |

Figure 8. Introduction screen with scrollable text. On the top right the user can switch between English and Greek.

The second screen contains a list of all the 3D objects that were scanned from the museum and are used
in the AR application. For the RelnHerit event, 12 objects were used and could be displayed. By clicking on
one of the objects, a new window appears which shows a preview of the object along with a small
description about it. Also, as indicated by a small icon next to object, the user can rotate the object and
view it from different angles. Finally, when the user is ready to start exploring, the top right yellow button
with the camera icon leads to the area selection screen. That button appears only when the user is close
to the location of the event.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

©

avtikeipeva

©

04

_
A ¢ 8
(m)
®

Figure 9. Screen that lists all the objects available in the application.

©

Bado pe «kavvoupkan,
ayyeio and kdkkivo nnAd
To ayyeio auvtd eival
QVTITIPOCWTIEUTIKO TWV AYPOTIKWY
KEVTPWY AYYEIOTIAACTIKAG, OTIWC TO
douwvi, oTou YUVAIKEC
ayyelomAdotplec katackevalav
Tétola ayyela oTov Tpoxo
{«yuplotdpi»). To ayyeio eival

T T

Figure 10. Preview of the object along with a brief description.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

3.4 GPS

The application should be working only in the area where the event should take place. This is why before
the user can check the areas of the exhibits, the application uses the mobile phone’s GPS to check its
location. Then the application compares the latitude and longitude of the current location and the location
of the event which is stored in the application. The distance of the two locations is then compared with a
minimum threshold that can be set beforehand. The GPS should be activated once the application starts

(by using Unity’s function Input.location.Start) just to get the initial location of the user and then be
deactivated (Input.location.Stop) to save battery.

©

avtikeipeva

Figure 11. If the application is out of range the yellow button with camera icon disappears.

StopTracking()
trackLocation =

Input.location.Stop();
IEnumerator InitializelocationTracking()

Input.location.Start(5f, 5f);

maxWait = 15;
while (Input.location.status == LocationServiceStatus.Initializing && maxWait > @)

{

yield return Wait sRealtime(1);
maxWait-—;

}

Figure 12. Code sample that starts and stops the GPS function.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

The third screen of the application contains the list of all the areas that are available to be scanned. When
the user touches one thumbnail, a new smaller window pops up with a wider image of the area. The user
should stand roughly in the same position as shown in the image and then touch again the camera button
at the bottom of the window to scan the area and begin the search for the AR Objects.

Figure 13. List of the areas that are available to be scanned.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

Figure 14. Larger image of the selected area.

3.5 Exhibition Locations Manager
The Exhibit Locations Manager holds all the info about the locations that are going to be used for the AR
application. Every new location needs to be added to the list along with the following data:

Name: The name of the area. It is used to distinguish between the areas that are in the application.
Index in Manifest List: The index of the Manifest that is going to be selected from the Manifests
list.

Index in Ul: The index of location in the Area selection screen.

Number of Anchors interacted with: The number of anchors (AR Objects) that the user has
interacted with so far. At the start of the application this variable is 0.

Number of Anchors at location: The anchors (AR Objects) that are available to be viewed at that
location.

Thumbnail: The image that is used is the Area selection screen.

Sprite: The image that is used when an Area is selected in the Area selection screen. It helps the
user to find the correct location to stand.

Temporary Overlay: An outline image of the area that helps the user to hold the mobile phone’s
camera in the correct angle.

Anchors: These are all the prefabs that are spawned in the area and are responsible for the AR
objects that will be shown.

10

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

n v Exhibit Locations Manager (Script)

Locations information

Lo
Tutorial

N

Anc
Pots Entry

Koro

Figure 15. The Exhibition Locations Manager script. It shows two locations named Tutorial (debug area) and the Cloth area.

3.5.1 Outline Overlays

To make it easier for the user to position better in the museum and view the exhibitions, some area
overlays were created. When the user first scans the area with the camera, an overlay of it appears on the
screen. By matching the outlines of the overlay to the scanned area, we help the user to align correctly
with the exhibits and interact with them. To create these overlays, we took pictures of these areas
beforehand under ideal lighting conditions. Then Photoshop was used to isolate the most significant
features of the images and create their outlines. It is also important to mention that these images are also
the ones that are used in the area selection menu which also helps the users to orient themselves in the
museum.

11

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

Figure 16. Image of the area that can be scanned (left) and the overlay of it that was created in Photoshop (right).

3.6 Exhibit Models Manager
The Exhibit Models Manager is responsible for spawning the correct models from a list of prefabs. For
these prefabs we use the Addressable Asset System from Unity. It allows the developers to ask for an
asset via its address. The asset can reside locally or remotely and then can be loaded whenever it is
needed. For the RelnHerit exhibition, the assets are hosted remotely on a server. That means that any
changes in the models can be made without the need to rebuild the application or the user to download
the application again.

n v Exhibit Models Manager (Script)

t-Doulapi

oA
5
1]
I
3 A
A
o/
%
B A
n/
A
]

Figure 17. The Exhibit Models Manager and its list of AR Objects that can be spawned.

12

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

3.7 Prefabs and Exhibit models
For each exhibit model that is going to be used in the application, a specific prefab needs to be created to
be used in the Exhibit Models Manager. That prefab holds every functionality that is needed for the AR
experience. Specifically, the “ArtExhibit” prefab has two important scripts on it, the “Exhibitltem” and the
“TriggerHandlers”.

e Exhibitltem: It holds references to some parts of the prefab and controls the minimum and the
maximum scale range that the model can reach when the user interacts with it.

e TriggerHandlers: This script handles most of the interactions that the user can perform. It checks
if the user has viewed or has interacted with the AR object. From here, the minimum distance for
interaction can be set. It is also responsible for the object’s texture. If the user is not at the
minimum distance from the object, the texture’s color becomes dark. As the user gets closer the
texture becomes clearer. If the user then interacts with it, the inverted texture is used to change
the color of the object. Finally, the sphere collider that is on this prefab should be customized so
that the developers can change the interaction area.

For future events, new AR objects can be created by simply adding a new model to “ArtExhibit” prefab
under its child root called “GraphicRoot”.

3.8 Views and Interactions
As it was mentioned before the script “TriggerHandlers” handles most of the events and interactions that
the user can perform on an exhibit. Before an interaction with an exhibit can begin, the user needs to be
a certain distance from it. This is controlled by a sphere collider in Unity that can be adjusted for each
exhibit.

Figure 18. Green sphere collider that defines the limits that the user must be to begin any interactions.

13

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

At first, the exhibits appear hidden with a black texture. As the user gets closer to them, the texture
gradually appears. When the whole texture is revealed a small tap icon appears which signals the user that
he can now interact with the exhibit by touching it and change its texture to negative colors. The sphere
collider and the distance the user must cover to reveal the exhibit’s texture are customizable through
Unity’s editor.

while (
{

distance = Vector3.Distance(CameraPosition.position, transform.position);

if (distance < farDistance && (Pl refs.GetInt(KeyName, 0) != 1))
{
if (distance < nearDistance)
{
ArtReveal(Color.white);
P1 s.SetInt(KeyName, 1);
DistanceCoroutine = -
I .Instance.ArtExhibit = itemData;
StartCoroutine(FlashTapIcon());
yield break;

colorInterpolation = (farDistance - distance) / interpolationDistance;
Color a = (colorInterpolation, colorInterpolation, colorInterpolation, 1f);
ArtReveal(a);
}

yield return cooldown;

Graphic Root ¥ GraphicRoot

Is Revealed

Interaction Collder € ArtExhibit-TurkinshMangali (Sphere
Near Distance 1.1

Mat

Art Number 74

Inverted % None (Texture)

Iltem Data B ArtExhibit-TurkinshMangali (Exhibit

Figure 20. Adjustable settings in the Unity editor such as the activation distance.

3.9 Firebase and Data Handling
The two types of data that are stored are how many users have viewed (and for how long) an exhibit and
if they managed to interact with it. Both are stored online by using Google’s online Database solution
called Firebase and specifically the Firestore database. The views are recorded when the user enters the
aforementioned sphere collider that exists in every exhibit and are updated with an exit time when the

14

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

user exits the collider (in order to calculate the duration of viewing). Interactions are recorded if the users
tap the exhibit when prompted by the application and change the exhibit’s texture.

umentReference SendInteractionOrViewEvent(i type, name)

DocumentReference addedDocRef = db.Collection(type).Document(name).Collection("Events").Document();
Debug.Log(.Format("Added document with ID: {0} in the "+ type +" collection for station "+ name +" in the events.", addedDocRef.Id));

Dictionary< > user = Dictionary< >
{
{ "UserID", Play s.GetString("UserID") }
3

addedDocRef . SetAsync(user) .ContinueWithOnMainThread(task => {
Debug.Log(.Format(
"Added data to the {0} document in the events collection for "+ type +".", addedDocRef.Id));
D;

addedDocRef .UpdateAsync("Timeadded”, FieldValue.ServerTimestamp).ContinueWithOnMainThread(task => {
Debug.Log(
"Updated the Timestamp field of the event for "+ type +" in station "+ name +"."
+ "collection.");
D;

return addedDocRef;

Figure 21. Code snippet of sending a view or interaction event to Firebase. Each event gets registered along with a unique userID.

IS7NIs 51 G
»ZN1 yoLGl

May 19, 2023 at 8 44:05SPM UTC+3

eTgfqVvMDF¢

May 19 2023 ats: 44 06PMUTC+3

KX

piZi

XV

)E 44yQa

May 19, 2023 at 8:44:06PM UTC+3

AUNOXNR2G5M

May19 2023 at844 12PM UTC+3
Add field qI2SNTBy1T1z5eJ40vNO

May 19 2023 at 8 44 14PM UTC+3

May19 2023 at84428 PMUTC+3

May 19, 2023 at84453 PMUTC+3

ghiWVnj fNNd144kSsite

May 19 2023 at 8 44 56 PMUTC+3

KwlTks

May 19, 2023 at 8:44:56 PM UTC+3

83rqdzY7VNZ1QbHkbTUs

May 19,2023 at 8:44: 59 PMUTC+3
FMayP2h4y9dPuB668

May 19, 2023 at 8:45:38PM UTC+3
bYN2bCGypu j rMKqeXzhX
May 19 2023 at 8 45 56 PMUTC+3

May 19 2023 at 8 46 11 PMUTC+3

v6 § SxL(

May 19 2023 at8: 46 20 PMUTC+3

16

May 19 2023 at 8'46 30 PMUTC+3
May 19 2023 at 8 46 34PMUTC+3

May 19 2023 at 8 46 35 PMUTC+3

Figure 22. Records of view events inside the Firestore database in chronological order.

Technical Manual for the “RelnHerit A Museum” Augmented Reality Mobile Application

Lastly, the Firestore database sends any incoming interaction events to the Base stations so that a sound
can be played. This is done automatically by the database if the Base station registers with that event for
a specific exhibit.

ListenDocuments(string type, stri name)

Query query = db.Collection(type).Document(name).Collection("Events").WhereNotEqualTo("Timeadded”, "").Limit(1).0rderByDescending("Timeadded");

ListenerRegistration listener = query.Listen(snapshot => {
Debug.Log("Callback received query snapshot.");
Debug.Log("I READ");

OnInteraction?.Invoke();

foreach (DocumentSnapshot documentSnapshot in snapshot.Documents)
{
Debug.Log(documentSnapshot.Id);
}
D;

Figure 23. Registering with a specific exhibit. Each time a new interaction happens, the database informs the base station.

3.10 Base station
The Base station application is responsible for playing various sounds when a user interacts with a specific
exhibit. Each Base station can be assigned to one exhibit. Before the performance the exhibits should each
be given a number (this is done through their prefab settings in the TriggersHandler script and assigning a
value to the “Art Number ” variable). Then when the application is launched, assign the correct “Art
Number”. After that the Base station will listen for interaction events that correspond to that exhibit ID
and will play a sound if there is one added.

Set Station Id

next song

Figure 24.Base station Ul. On the top left input field, the user specifies which exhibit this Base station is for. Pressing the "Set
Station Id" the base station registers with the database and receives any new interactions that can occur.

It should be noted that the Base station needs to be connected to the internet during the performance to
communicate with Firebase.

16

